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Abstract
Purpose  A unique advantage of the brain positron emission tomography (PET) imaging is the ability to image different 
biological processes with different radiotracers. However, the diversity of the brain PET image patterns also makes their 
spatial normalization challenging. Since structural MR images are not always available in the clinical practice, this study 
proposed a PET-only spatial normalization method based on adaptive probabilistic brain atlas.
Methods  The proposed method (atlas-based method) consists of two parts, an adaptive probabilistic brain atlas generation 
algorithm, and a probabilistic framework for registering PET image to the generated atlas. To validate this method, the results 
of MRI-based method and template-based method (a widely used PET-only method) were treated as the gold standard and 
control, respectively. A total of 286 brain PET images, including seven radiotracers (FDG, PIB, FBB, AV-45, AV-1451, 
AV-133, [18F]altanserin) and four groups of subjects (Alzheimer disease, Parkinson disease, frontotemporal dementia, and 
healthy control), were spatially normalized using the three methods. The results were then quantitatively compared by using 
correlation analysis, meta region of interest (meta-ROI) standardized uptake value ratio (SUVR) analysis, and statistical 
parametric mapping (SPM) analysis.
Results  The Pearson correlation coefficient between the images computed by atlas-based method and the gold standard was 
0.908 ± 0.005. The relative error of meta-ROI SUVR computed by atlas-based method was 2.12 ± 0.18%. Compared with 
template-based method, atlas-based method was also more consistent with the gold standard in SPM analysis.
Conclusion  The proposed method provides a unified approach to spatially normalize brain PET images of different radiotrac-
ers accurately without MR images. A free MATLAB toolbox for this method has been provided.
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Introduction

Positron emission tomography (PET) combined with a vari-
ety of radiotracers can image function, metabolism, neu-
rochemistry, and pathology in the living human brain [1]. 
Meanwhile, new radiotracers for brain PET imaging have 

been continuously developed, expanding the application 
scope of brain PET imaging [2]. Spatial normalization is an 
essential procedure in objective assessment and statistical 
comparison of brain PET images. However, the different 
patterns of the brain PET images of different radiotracers 
make their spatial normalization challenging.

A widely used method of brain PET image spatial nor-
malization is MRI-based method [3]. In this method, brain 
PET images and corresponding structural MR images 
(sMRI) need to be co-registered first, and then use sMRI 
as an intermediary to perform spatial normalization. Since 
the sMRI provides better anatomical information and spatial 
resolution than PET images, it is generally believed that the 
MRI-based method has high accuracy. However, in some 
clinical practice and many retrospective data, there is often 
no corresponding sMRI [4]. Additional MRI scans can also 
bring additional costs and risks for patients. Moreover, there 
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are some patients who are contraindicated to undergo MRI 
scan due to the pacemakers and metal implants. These rea-
sons highlight the significance of developing PET-only spa-
tial normalization method.

The template-based method is a commonly used PET-
only method which is based on minimizing the difference 
between the individual image and the template image with 
constraints on the plausibility of deformations. The accu-
racy of the template-based method depends on the similar-
ity between the individual image and the template image. 
Therefore, different brain templates need to be constructed 
for different radiotracers, even the same radiotracers with 
different brain pathological states [5–7]. When the individ-
ual image and the template image are quite different, which 
is very common in pathological imaging (such as amyloid-β 
imaging and tau imaging), the template-based method will 
reduce the accuracy of spatial normalization and impair the 
results of the statistical analysis [8, 9].

To overcome these problems, we consider using the brain 
cytoarchitecture information as the prior information to spa-
tially normalize brain PET images. For brain structural MR 
images, a spatial normalization algorithm named “unified 
segmentation,” using the tissue probability maps of gray 
matter, white matter, and cerebrospinal fluid (CSF) as the 
prior information and unifying the spatial normalization, 
segmentation, and nonuniformity correction in a probabilis-
tic framework of generative model, has been proposed [10]. 
However, due to diversity and complexity of the brain PET 
image patterns, the brain PET image signal intensity cannot 
be simply treated as the generation model of gray matter, 
white matter, and CSF. Instead, cytoarchitectonic maps may 
match the brain PET images since the PET is a molecular 
imaging that allows assessment of molecular processes at 
cellular level.

In this study, we developed a PET-only spatial normaliza-
tion method based on the adaptive probabilistic brain atlas 
suitable for brain PET images with different tracers and 
brain diseases. The method will be referred as atlas-based 
method in the following. In atlas-based method, an adap-
tive probabilistic brain atlas was generated and combined 
with the unified segmentation algorithm to perform spatial 
normalization for each individual brain PET image. In order 
to verify this method, three methods (MRI-based method, 
template-based method, and atlas-based method) were used 
to perform spatial normalization for each of the brain PET 
images and the results of MRI-based method were treated 
as gold standard. The accuracy of this method was evalu-
ated in three aspects. First, Pearson correlation coefficients 
between the spatially normalized images computed by the 
MRI-based method and those computed by the other two 
methods were computed. Second, the meta region of interest 
(meta-ROI) standardized uptake value ratios (SUVRs) of the 
healthy controls (HC), Alzheimer disease (AD), Parkinson 

disease (PD), and frontotemporal dementia (FTLD) brain 
PET images were calculated with the three methods, and 
the relative errors and the Pearson correlation coefficients 
between the meta-ROI SUVRs computed with MRI-based 
method and those computed with the other two methods 
were calculated. Third, the voxel-wise statistical parametric 
mapping (SPM) results between patients and HC obtained 
with the three methods were compared.

Materials and methods

Subjects and radiotracers

A total of 406 brain PET images, including FDG (18F-fluro-
2-deoxyglucose), PIB (11C-Pittsburgh Compound B), 
FBB (18F-Florbetaben), AV-45 (18F-florbetapir), AV-1451 
(18F-flortaucipir), AV-133 (9-18F-Fluoropropyl-( +)-dihy-
drotetrabenazine), and [18F]altanserin (3-(2-(4-(4-[18F]
fluorobenzoyl)-1-piperidinyl)ethyl)-2,3-dihydro-2-thioxo-
4(1H)-quinazolinone), and their corresponding T1-weighted 
MR images were included in this study and divided into 
two cohorts: a template creation cohort (120 images) and a 
registration validation cohort (286 images). All data come 
from the following five public databases, including ADNI 
(Alzheimer’s Disease Neuroimaging Initiative; http://​adni.​
loni.​usc.​edu), AIBL (The Australian Imaging, Biomarker 
and Lifestyle Study of Aging; http://​www.​AIBL.​csiro.​au), 
ICBM (International Consortium for Brain Mapping) [11], 
NIFD (Neuroimaging in Frontotemporal Dementia; https://​
memory.​ucsf.​edu/​resea​rch-​trials/​resea​rch/​allftd), and PPMI 
(Parkinson’s Progression Markers Initiative; https://​www.​
ppmi-​info.​org). Informed consent was obtained from all 
participants by the leading institutions of each dataset. The 
ethics committee of the leading institution of each dataset 
approved its study. The demographic information of the sub-
jects is shown in Table 1. Imaging protocols are shown in 
Supplementary File 1.

MRI‑based and template‑based spatial 
normalization method

For MRI-based method, the PET images were first co-
registered to their corresponding T1-weighted MR images 
by using a rigid-body model with the normalized mutual 
information as the objective function in SPM12 (Wellcome 
Trust Centre for Neuroimaging, London, UK). Then, the 
MR images were spatially normalized into MNI (Montreal 
Neurological Institute) space using SPM12 “Normalise” 
tool with defined settings. The deformation fields for MR 
image spatial normalization were then applied to the cor-
responding co-registered PET images. The matrix size of 
the spatially normalized images was 121 × 145 × 121, and 
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the resolution was 1.5 × 1.5 × 1.5 mm. Same matrix size and 
resolution were used in template-based method and atlas-
based method.

For template-based method, the templates were con-
structed by averaging the intensity normalized images in 
the template creation cohorts and smoothing the averaged 
images with an 8-mm Gaussian kernel. For PIB, FBB, 
AV-45, and AV-1451 PET images, 10 typical positive images 
and 10 typical negative images were selected by an experi-
enced radiologist to make positive and negative template, 
respectively. For FDG PET images, 10 HC subjects, 10 AD 
subject, and 10 FTLD subject were used to make an HC 
FDG template and two dementia-specific FDG templates. 
For AV-133 PET images, only 10 PD subjects were used to 
make AV-133 templates for PD subjects, and the AV-133 
template for HC subjects was not made because there are 
only five healthy subjects. For [18F]altanserin, due to the 
insufficient number of subjects, the template was not made. 
After constructing the templates, the PET images were 
spatially normalized by registering with the corresponding 
templates using SPM12 “Old Normalise” tools. For FDG 

images of the AD group and FTLD group, both dementia-
specific FDG templates and HC FDG template were used 
to spatially normalize PET images, and the template whose 
spatially normalized results were closer (higher Pearson cor-
relation coefficient) to those of the MRI-based method was 
selected for subsequent analysis (HC FDG template for FDG 
images of the AD group and FTLD-specific FDG template 
for FDG images of the FTLD group). For each PET image of 
PIB, FBB, AV-45, and AV-1451, both positive and negative 
templates were used for spatial normalization, and of the 
two spatially normalized images, the closer (higher Pearson 
correlation coefficient) to the gold standard was selected for 
subsequent analysis.

Atlas‑based spatial normalization method

Atlas‑based spatial normalization algorithm

The idea of the atlas-based algorithm is to generate the 
adaptive probabilistic brain atlas that best “matches” the 
individual PET image from the initial probabilistic brain 

Table 1   The demographic 
information of the subjects

Tracers Cohort Group n Sex (M/F) Age (mean ± STD) Databases

FDG Registration validation HC 30 15/15 78.1 ± 9.5 ADNI
AD 28 17/11 76.4 ± 7.2 ADNI
FTLD 18 12/6 62.5 ± 6.5 NIFD

Template creation HC 10 6/4 75.1 ± 5.1 ADNI
AD 10 6/4 72.0 ± 7.6 ADNI
FTLD 10 6/4 63.1 ± 3.6 NIFD

PIB Registration validation HC 15 9/6 78.1 ± 5.4 ADNI
AD 15 9/6 73.9 ± 9.4 ADNI
FTLD 8 6/2 64.3 ± 5.2 NIFD

Template creation Negative 10 5/5 74.3 ± 4.5 AIBL
Positive 10 3/7 74.9 ± 7.4 AIBL

FBB Registration validation HC 14 5/9 70.1 ± 7.7 ADNI
AD 21 15/6 74.7 ± 6.9 ADNI
PD 26 20/6 65.2 ± 8.5 PPMI

Template creation Negative 10 2/8 70.3 ± 6.5 ADNI
Positive 10 6/4 72.1 ± 8.6 ADNI

AV-45 Registration validation HC 18 6/12 72.5 ± 7.9 ADNI
AD 11 6/5 79.1 ± 5.3 ADNI

Template creation Negative 10 4/6 79.7 ± 8.7 ADNI
Positive 10 7/3 71.9 ± 13.6 ADNI

AV-1451 Registration validation HC 32 13/19 70.7 ± 7.7 ADNI
AD 20 14/6 75.2 ± 6.6 ADNI

Template creation Negative 10 2/8 79.2 ± 6.9 ADNI
Positive 10 8/2 72.2 ± 10.4 ADNI

AV-133 Registration validation HC 5 5/0 66.3 ± 8.0 PPMI
PD 15 12/3 63.0 ± 9.8 PPMI

Template creation PD 10 7/3 61.8 ± 12.7 PPMI
[18F]altanserin Registration validation HC 10 5/5 26.6 ± 5.7 ICBM
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atlas containing fine-grained brain regions, and then reg-
ister the individual PET image into the adaptive probabil-
istic brain atlas in MNI space. The adaptive probabilistic 
brain atlas is a set of probabilistic images for multiple 
tissue types. The flowchart of the atlas-based spatial nor-
malization algorithm is shown in Fig. 1. First, the unified 
segmentation algorithm in SPM12 with the TPM (tis-
sue probability maps) of gray matter, white matter, CSF, 
skin, skull, and background was used to roughly spatially 
normalize the PET images. Briefly, the unified segmenta-
tion algorithm models the signals in the image through 
Gaussian mixture model and tissue probability maps, 
and then unifies spatial normalization, segmentation, and 

nonuniformity correction under a framework of genera-
tive model. The optimization of the model parameters is 
performed using expectation maximization algorithm [10]. 
Since not all PET images can be simply modeled with 
the TPM, this step is just used to achieve approximate 
alignment. Then, the adaptive probabilistic brain atlas 
generation algorithm was used to generate the adaptive 
probabilistic brain atlas for each individual PET image. 
The detailed implementation of the adaptive probabilis-
tic brain atlas generation algorithm is described below. 
Finally, the unified segmentation algorithm in SPM12 with 
the adaptive probabilistic brain atlas was used to spatially 
normalize the PET images.

Fig. 1   The flowchart of the atlas-based method
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Adaptive probabilistic brain atlas generation 
algorithm

In order to generate a corresponding adaptive probabilistic brain 
atlas for each brain PET image, first, a probabilistic atlas of 
human brain cytoarchitecture was used as the initial probabilis-
tic atlas. Then, an objective function which reflects the trade-off 
between the modeling ability and the complexity of atlas was 
proposed. Finally, a clustering algorithm for merging the brain 
regions of the initial probabilistic brain atlas was proposed to 
obtain the adaptive probabilistic brain atlas by minimizing the 
objective function. Therefore, each time the atlas-based method 
is performed, a corresponding adaptive probabilistic brain atlas 
is generated for the target brain PET image.

Initial probabilistic brain atlas

The Julich-Brain, a probabilistic atlas of human brain cyto-
architecture in the MNI space including 91 cortical areas and 
subcutaneous nuclei, was used as the initial prior informa-
tion [12]. Due to the finite resolution of PET images, some 
small brain regions were manually merged into large brain 
regions based on their anatomical structures to increase the 
robustness of the algorithm. In addition, since the Julich-
Brain does not contain white matter and extra-brain struc-
tures, the Julich-Brain and the probability maps of white 
matter, CSF, skin, and skull were merged together to build a 
whole probabilistic brain atlas with 41 brain regions.

Objective function

The objective function includes two parts, the likelihood 
term, which reflects the ability of the atlas to model a brain 
PET image, and the regularization term, which reflects the 
complexity of the atlas.

First, the likelihood term of objective function is esti-
mated by a Gaussian mixture model. The weighted mean �t 
and the weighted variance �2

t
 of voxel intensity in the brain 

region t are:

where I  is the number of voxels in the image, yi is the 
intensity of voxel i , and � t

i
 is the prior probability of voxel 

i belonging to the brain region t , determined by the proba-
bilistic brain atlas. In order to reduce the partial volume 
effect, we set � t

i
= 0 for the voxels on the boundary of the 

brain regions.
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It is assumed that the voxel intensity of PET image in the 
same brain region satisfies Gaussian distribution. Taking the 
�t and �2

t
 as the mean and variance of the Gaussian function 

of intensity distribution in the brain region t , for any voxel 
i with intensity yi , the probability density that it belongs to 
the brain region t is:

The probability density that voxel i belongs to the images 
is the sum of all Gaussians:

where T  is the number of brain regions. Assuming that each 
voxel is independent, the probability density of the entire 
image P is the product of the probability densities of all vox-
els i , 

∏
i pi . The assumption that the voxels are independent 

is to simplify the model and is not rigorous. Take the nega-
tive logarithm of P to get the likelihood term:

Then, the regularization term of the objective function 
that reflects the complexity of the model is determined by 
the number of parameters of the model:

The objective function is the sum of the likelihood term 
and the regularization term.

where � is a hyperparameter that can adjust the ratio of the 
regularization term to the likelihood term.

Clustering algorithm

In order to obtain an adaptive probabilistic brain atlas cor-
responding to the individual PET brain image, the brain 
regions of the initial probabilistic brain atlas should be clus-
tered to minimize the objective function. Here, a hierarchical 
clustering greedy algorithm was proposed:

I	 Calculate the objective function for the initial atlas and 
weighted mean of voxel intensity of each brain region.

J	 Sort the brain regions according to the weighted means 
from low to high.
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K	 For any brain region, try to merge it with its neighbor-
ing brain regions, and calculate the objective function 
for new atlas. If all the possible merging fails to reduce 
the objective function, the probabilistic brain atlas at 
this time is the final result and stop merging. Other-
wise, select the merging way which can maximize the 
reduction of the objective function and generate a new 
atlas.

L	 Repeat steps I, J, and K until you get the final adaptive 
probabilistic brain atlas.

Quantitative verification of atlas‑based method

Correlation analysis

All brain PET images in the validation cohort were spa-
tially normalized using three methods (atlas-based, tem-
plate-based, and MRI-based methods). The intracranial 
voxels of brain PET images were extracted by the intrac-
ranial mask from SPM12. The Pearson correlation coeffi-
cients between the voxels of brain PET images computed 
by MRI-based method and the other two methods were 
calculated for each image. Paired-sample t-tests were 
then performed to investigate the differences of correla-
tions between template-based and atlas-based method in 
14 subgroups (FDG HC, FDG AD, FDG FTLD, PIB HC, 
PIB AD, PIB FTLD, FBB HC, FBB AD, FBB PD, AV-45 
HC, AV-45 AD, AV-1451 HC, AV-1451 AD, and AV-133 
PD). P < 0.05 was considered statistically significant. 
The magnitudes of changes in correlation coefficients 
between the atlas-based and template-based methods ver-
sus the MRI-based method across all 14 subgroups were 
also computed.

Furthermore, the spatial normalization accuracy 
of atlas-based method was measured by Pearson cor-
relation coefficients between the spatially normalized 
images obtained by atlas-based method and MRI-based 
method. The mutual information between the spatially 
normalized images computed with MRI-based method 
and the maximum probability maps of the initial proba-
bilistic brain atlas was computed for all images in the 
validation cohort. Pearson correlation coefficients 
between the mutual information and spatial normali-
zation accuracy of the 286 PET images and Pearson 
correlation coefficients between the mean mutual infor-
mation and mean spatial normalization accuracy of all 
16 subgroups of PET images (FDG HC, FDG AD, FDG 
FTLD, PIB HC, PIB AD, PIB FTLD, FBB HC, FBB 
AD, FBB PD, AV-45 HC, AV-45 AD, AV-1451 HC, 
AV-1451 AD, AV-133 HC, AV-133 PD, and [18F]altan-
serin HC) were computed.

Quantitative comparison at meta‑ROI SUVR level

In the clinical trials, meta-ROI SUVRs are usually calcu-
lated to indicate the degree of pathology [13]. The meta-ROI 
SUVR is formed from the voxel average uptake in the meta-
ROI normalized to the reference region. The meta-ROIs 
and reference regions we used for each group are shown 
in Table S1 in Supplementary File 2. In brief, for AD, the 
meta-ROI of FDG PET includes the angular gyrus, posterior 
cingulate, and inferior temporal cortical, and the reference 
region is the cerebellum [14]. The meta-ROI of tau PET 
includes the entorhinal, amygdala, parahippocampal, fusi-
form, inferior temporal, and middle temporal regions, and 
the reference region is the cerebellar gray matter [13]. For 
FTLD, the meta-ROI of FDG PET includes the frontal lobe, 
anterior temporal lobe, and anterior cingulate, and the refer-
ence region is the cerebellum [15]. For PD, the meta-ROI of 
AV-133 PET is the striatum, and the reference region is the 
occipital lobe [16]. For AD, PD, and FTLD, the meta-ROI 
for amyloid PET (PIB, FBB, and AV-45) includes the fron-
tal, anterior/posterior cingulate, lateral parietal, and lateral 
temporal regions, and the reference region is the cerebellum 
[17].

To evaluate the accuracy of the methods, the relative 
errors and Pearson correlation coefficients of the meta-
ROI SUVRs computed with atlas-based method and 
template-based method comparing with those computed 
with MRI-based method were calculated separately for 
each subject group. To calculate the relative error of 
meta-ROI SUVRs of a certain method for each group, the 
relative error of meta-ROI SUVRs for each subject in the 
group was first calculated, and then the mean and stand-
ard error (SEM) of the relative error for all subjects in the 
group were calculated. The relative error of meta-ROI 
SUVRs of a certain method in a subject is defined as |SUVRtarget method−SUVRMRI−based method|

SUVRMRI−based method

× 100% . SUVRtarget method is 

the meta-ROI SUVR calculated with a certain method (atlas-
based method or template-based method).

Voxel‑wise SPM analysis

Two-sample t-tests and chi-square analysis were first per-
formed on the age and gender of the eight groups (FDG 
AD vs. HC; FDG FTLD vs. HC; PIB AD vs. HC; PIB 
FTLD vs. HC; FBB AD vs. HC; FBB PD vs. HC; AV-45 
AD vs. HC; AV-1451 AD vs. HC). Voxel-wise two-sample 
t-tests were performed on all eight groups using SPM12 
without gender and age as covariates. The pre-processing 
PET images were performed as follows: The images were 
spatially normalized into MNI space using atlas-based, 
template-based, and MRI-based method, smoothed with 
an 8-mm Gaussian kernel, and intensity normalized to 
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the reference regions which were same as the reference 
regions we used to compute meta-ROI SUVRs. The brain 
regions were considered significant by the GRF correction 
with voxel-level P < 0.001 and cluster-level P < 0.05 using 

DPABI [18]. Therefore, each group will have three dif-
ferent results of the significant changed regions since the 
difference of the spatial normalization methods. The Dice 
coefficient was used to compute the similarity between the 
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n
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Fig. 2   The Pearson correlation coefficients between the spatially nor-
malized images computed by MRI-based method and the other two 
(atlas-based and template-based) methods. Paired-sample t-tests were 

then performed to investigate the differences of correlations between 
template-based and atlas-based method. ns: not significant; *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001
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results of MRI-based method and the results of the other 
two methods. The equation for Dice coefficient is:

where A and B are two binary masks for the significant brain 
regions. If the volumes of A and B are 0, we define the Dice 
coefficient between A and B to be 1.

Result

Correlation analysis

The mean and SEM of Pearson correlation coefficients 
between the images computed by the MRI-based method and 
other two methods (atlas-based method and template-based 
method) were 0.908 ± 0.005 and 0.864 ± 0.006, respectively. 
The Pearson correlation coefficients of atlas-based method 
were significantly higher (P < 0.05) than those of template-
based method in almost all (13/14) groups, as shown in 
Fig. 2 and Fig. 3.

The mutual information and the spatial normalization 
accuracy of the atlas-based method were significantly posi-
tively correlated, as shown in Fig. 4.

D =
2|A ∩ B|
|A| + |B|

AV-133 PD

AV-1451 AD

AV-1451 HC

AV-45 AD

AV-45 HC

FBB PD

FBB AD

FBB HC

PIB FTLD

PIB AD

PIB HC

FDG FTLD

FDG AD

FDG HC

Changes in correlation coefficients

-0.05 0 0.05 0.10 0.15

Fig. 3   The changes in correlation coefficients between the atlas-based 
and template-based methods versus the MRI-based method across all 
subject groups

Fig. 4   a The correlation between spatial normalization accuracy of 
atlas-based method and mutual information of the 286 PET images. 
b The correlation between mean spatial normalization accuracy of 

atlas-based method and mean mutual information of the 16 subgroups 
of PET images
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Quantitative comparison at meta‑ROI SUVR level

The mean and SEM of relative errors of meta-ROI SUVR 
computed with atlas-based method and template-based 
method were 2.12 ± 0.18% and 3.28 ± 0.24%, respectively. 
The mean Pearson correlation coefficient of atlas-based 
method in 15 groups was 0.978 ± 0.005, while the mean 
Pearson correlation coefficient of template-based method 
was 0.950 ± 0.012 (see Table 2). Correlations between the 
meta-ROI SUVR obtained by the MRI-based method and 
those obtained by the atlas-based or template-based method 
are shown in Fig. 5.

Voxel‑wise SPM analysis

There are no group differences in age and gender between 
FDG AD groups and FDG HC groups, and between PIB AD 
groups and PIB HC groups (see Table S2 in Supplementary 
File 2). The voxel-wise SPM two-sample t-test results of 
FDG AD vs. HC and PIB AD vs. HC are shown in Fig. 6. 
The SPM results of other groups are shown in Suppl. Fig-
ures 1–6 in Supplementary File 2. The Dice coefficients 
between the significantly different regions computed with 
atlas-based method and those computed with MRI-based 
method were higher than the dice coefficients between the 
significantly different regions computed with template-based 
method and those computed with MRI-based method in both 

FDG AD vs. HC groups (0.727 > 0.667) and PIB AD vs. HC 
groups (0.737 > 0.595).

Discussion

In this study, we proposed a unified spatial normalization 
method of brain PET images based on the adaptive proba-
bilistic brain atlas. The results showed that the spatially nor-
malized images and the subsequent statistical analysis results 
obtained with the atlas-based method were highly consistent 
with those obtained with the MRI-based method. Moreo-
ver, the atlas-based method has higher spatial normalization 
accuracy than the template-based method. Therefore, the 
atlas-based method allows for accurate registration of brain 
PET images of different radiotracers and pathological state 
into standard space without additional structural MR images. 
Since the atlas-based method is not specifically aimed at the 
brain PET images of a certain radiotracer, theoretically this 
method can even be used for the spatial normalization of 
the brain PET images of the newly developed radiotracer. 
A MATLAB toolbox for this method is freely available at 
https://​github.​com/​IHEP-​Brain-​Imagi​ng/​Spati​al-​Norma​lizat​
ion-​of-​Brain-​PET-​Images.

The PET images in this study were from multiple 
datasets with different image protocols. The atlas-based 
method, however, can be successfully applied to the images 
from multiple datasets, implying robustness and broad 

Table 2   The meta-SUVRs, relative errors, and correlation coefficients obtained by different methods

* Mean ± SEM
† With MRI-based method

Groups Meta-ROI SUVRs * Relative errors (%) † Correlation coefficients †

MRI-based Template-based Atlas-based Template-based Atlas-based Template-based Atlas-based

FDG HC (AD meta-ROI) 1.003 ± 0.018 1.001 ± 0.015 0.996 ± 0.018 2.22 1.52 0.971 0.985
FDG HC (FTLD meta-ROI) 0.962 ± 0.015 0.943 ± 0.014 0.970 ± 0.015 4.07 2.34 0.855 0.932
FDG AD 0.920 ± 0.017 0.936 ± 0.014 0.916 ± 0.016 2.90 1.21 0.945 0.989
FDG FTLD 0.904 ± 0.046 0.890 ± 0.040 0.933 ± 0.045 3.57 3.65 0.987 0.993
PIB HC 1.133 ± 0.058 1.137 ± 0.064 1.143 ± 0.057 3.79 2.13 0.981 0.993
PIB AD 1.467 ± 0.074 1.501 ± 0.075 1.479 ± 0.073 4.06 2.23 0.967 0.991
PIB FTLD 0.998 ± 0.034 0.992 ± 0.033 1.025 ± 0.034 1.57 2.64 0.969 0.992
FBB HC 1.038 ± 0.020 1.066 ± 0.020 1.049 ± 0.024 3.17 1.46 0.949 0.982
FBB AD 1.451 ± 0.052 1.411 ± 0.045 1.451 ± 0.051 3.54 1.72 0.984 0.984
FBB PD 1.041 ± 0.017 1.056 ± 0.011 1.064 ± 0.015 3.58 2.97 0.867 0.937
AV-45 HC 1.152 ± 0.043 1.166 ± 0.038 1.169 ± 0.042 3.03 1.86 0.977 0.991
AV-45 AD 1.344 ± 0.075 1.294 ± 0.066 1.338 ± 0.071 4.20 1.99 0.975 0.978
AV-1451 HC 1.224 ± 0.015 1.217 ± 0.012 1.214 ± 0.015 2.28 1.50 0.878 0.957
AV-1451 AD 1.498 ± 0.060 1.480 ± 0.059 1.498 ± 0.064 2.25 1.62 0.989 0.989
AV-133 PD 1.640 ± 0.075 1.677 ± 0.064 1.634 ± 0.073 5.03 2.90 0.958 0.982
mean ± SEM - - - 3.28 ± 0.24 2.12 ± 0.18 0.950 ± 0.012 0.978 ± 0.005

https://github.com/IHEP-Brain-Imaging/Spatial-Normalization-of-Brain-PET-Images
https://github.com/IHEP-Brain-Imaging/Spatial-Normalization-of-Brain-PET-Images
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applicability of the method. We found that the accuracy of 
spatial normalization of PET images was positively corre-
lated with the mutual information between the PET images 
and maximum probability maps of the initial probabilistic 

brain atlas. Mutual information represents how much infor-
mation can be gained from one random variable by observ-
ing another random variable. On the one hand, this result 
showed that the accuracy of the spatial normalization is 
related to the information contained in the image itself. The 
information contained in the image is related to the tracer, 
the disease state of the subject, and etc. Therefore, images of 
different tracers and disease states have different spatial nor-
malization accuracy. On the other hand, since the atlas-based 

Fig. 5   Correlations between the meta-ROI SUVRs obtained by the 
MRI-based method and those obtained by the atlas-based method 
(red dots and lines) and template-based method (blue dots and lines). 
The black dotted lines are the lines of identity

◂

Fig. 6   Voxel-wise SPM results of two-sample t-tests of FDG and 
PIB PET images between AD and HC groups. Significantly (voxel-
level P < 0.001 and cluster-level P < 0.05, GRF correction) different 

regions computed with the three methods are shown in a-c for FDG 
PET images and in d-f for PIB PET images
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method needs to register the PET image to the adaptive 
probabilistic brain atlas, the probabilistic brain atlas is cru-
cial for PET image spatial normalization accuracy. The brain 
atlas used in this study is probabilistic, which enables it to 
account for variations between individual brains. However, 
due to the atrophy and deformation of the brain in patients, 
the spatial normalization accuracy of PET images of patients 
may be further improved by making patient-specific proba-
bilistic brain atlas. The template-based method was treated 
as a control method in this study. Many studies have con-
structed different templates for different brain PET images. 
For example, positive and negative tau PET templates were 
constructed by using 24 AD patients and 22 HC subjects [7]. 
A PIB PET template suitable for Down syndrome patients 
was constructed using 72 patients [6]. Positive, negative, and 
mixed PIB PET templates suitable for AD and HC were also 
created [8]. Therefore, we also made positive and negative 
templates for PIB, FBB, AV-45, and AV-1451 PET images. 
One problem of the template-based method is that it is nec-
essary to select a suitable template before registration, so 
that the template-based method is subjective. In this study, 
we picked the template based on the spatial normalization 
results of MRI-based methods, so that we could reach the 
“best” results of the template-based method. The atlas-based 
method, however, avoids the subjectivity of the researchers 
and makes the results more reproducible.

Other kinds of PET-only methods have been proposed. 
One way is using adaptive templates to spatially normal-
ize PET images of PIB [19] or 18F-flutemetamol [20, 21]. 
These methods use a linear combination of two images 
to generate an adaptive template that spans the uptake 
range from the most negative amyloid-β image to the 
most positive amyloid-β image. Therefore, these meth-
ods are limited to the spatial normalization of amyloid-β 
imaging. By comparison, the atlas-based method can be 
applied not only to amyloid-β imaging, but also to brain 
PET images of other radiotracers. Deep learning has also 
been used for PET image spatial normalization. For exam-
ple, a deep neural network for spatial normalization of tau 
PET images was trained and validated using 199 tau PET 
images and corresponding MR images [22]. Two deep 
neural networks that produce adaptive PET templates 
for PIB PET images were trained and validated using 
681 pairs of simultaneously acquired PIB PET and MRI 
scans of AD, MCI, and HC subjects [23]. These methods 
usually require hundreds of PET images and the corre-
sponding MR images to train deep neural networks, and 
the trained neural network can only be used for the brain 
PET images of a specific radiotracer depending on the 
training data. Collecting hundreds of thousands of brain 
PET images of a specific tracer and their correspond-
ing MR images to train deep neural networks is difficult, 

expensive, and time-consuming for some clinical studies. 
The atlas-based method, however, does not require any 
PET images or MR images for training, and can be used 
for spatial normalization of the PET images of multiple 
radiotracers.

There are some limitations in the atlas-based method. 
First, the origin and direction of the images will affect the 
results. This is due to the nature of the unified segmenta-
tion algorithm. Therefore, the origin of the image should 
be placed close to the anterior commissure and the direc-
tion of the image should be positioned to roughly match 
MNI space before performing the atlas-based method. 
Second, the atlas-based method is currently validated 
on PET images of 7 common radiotracers. Although our 
method is applicable to almost all kinds of brain PET 
images in principle, it needs further verification on other 
radiotracers.

Conclusion

In this study, we proposed a unified method for accurate spa-
tial normalization of various brain PET images without MR 
images, and the method has potential clinical applications.
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